Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Growth rates of geometric grid classes of permutations

Bevan, David (2014) Growth rates of geometric grid classes of permutations. The Electronic Journal of Combinatorics, 21 (4). pp. 1-17. ISSN 1077-8926

Text (Bevan-EJC-2014-Growth-rates-of-geometric-grid-classes-of-permutations)
Final Published Version

Download (343kB) | Preview


Geometric grid classes of permutations have proven to be key in investigations of classical permutation pattern classes. By considering the representation of gridded permutations as words in a trace monoid, we prove that every geometric grid class has a growth rate which is given by the square of the largest root of the matching polynomial of a related graph. As a consequence, we characterise the set of growth rates of geometric grid classes in terms of the spectral radii of trees, explore the influence of "cycle parity" on the growth rate, compare the growth rates of geometric grid classes against those of the corresponding monotone grid classes, and present new results concerning the effect of edge subdivision on the largest root of the matching polynomial.