Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Cobalt half-sandwich, sandwich, and mixed sandwich complexes with soft tripodal ligands

Dodds, C.A. and Lehmann, M.A. and Ojo, J.F. and Reglinski, J. and Spicer, M.D. (2004) Cobalt half-sandwich, sandwich, and mixed sandwich complexes with soft tripodal ligands. Inorganic Chemistry, 43 (16). pp. 4927-4934. ISSN 0020-1669

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Reaction of sodium hydrotris(methimazolyl)borate (NaTmMe) with cobalt halides leads to the formation of paramagnetic pseudotetrahedral [Co(Tm-Me)X] (X = Cl, Br, I), of which the bromide has been crystallographically characterized. Mass spectrometry reveals the presence of higher molecular weight fragments [Co(Tm-Me)(2)](+) and [Co-2(Tm-Me)(2)X](+) in solution. Aerial oxidation in donor solvents (e.g. MeCN) leads to formation of the [Co(Tm-Me)(2)](+) cation, which has been crystallographically characterized as the BF4-, ClO4-, Br-, and I-, salts. Attempts to prepare the mixed sandwich complex, [Co(Cp)(Tm-Me)](+), resulted in ligand decomposition to yield [Co(mtH)(3)I]I (mtH = 1-methylimidazole-2-thione), but with the more electron donating methylcyclopentadienyl (Cp-Me) ligand, [Co(Cp-Me)(Tm-Me)]I was isolated and characterized. Electrochemical measurements reveal that the cobalt(III) Tm-Me complexes are consistently more difficult to reduce than their Tp and Cp congeners.