Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Wind turbine foundation deburial sensors based on induction-heated ceramic patches

Perry, Marcus and Saafi, Mohamed and Fusiek, Grzegorz and Niewczas, Pawel (2015) Wind turbine foundation deburial sensors based on induction-heated ceramic patches. In: Proceedings of SMAR 2015 the 3rd Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures. Istanbul Technical University, Antalya. ISBN 9783905594652

[img]
Preview
Text (Perry-etal-SMAR2015-Wind-turbine-foundation-deburial-sensors)
Perry_etal_SMAR2015_Wind_turbine_foundation_deburial_sensors.pdf
Accepted Author Manuscript

Download (491kB) | Preview

Abstract

The deburial and scouring of concrete wind turbine and bridge foundations presents a risk to structural stability and safety. In this work, we present a novel, ceramic temperature-sensing patch which can detect whether sections of a foundation are buried or exposed to air. The sensor patches, applied to concrete specimens, were fabricated by loading a geopolymer with 0 - 60 wt% ground magnetite. The magnetite content allowed the patches to be heated using an induction coil, while temperature profiles were monitored via changes in patch electrical impedance. Sensor patches were left uncoated, or were coated in surface-water, soil and sand. Each material provided a unique thermal signature which, with simple signal processing, could be used to reliably detect whether the patch was buried.