Picture of offices in the City of London

Open Access research that is better understanding work in the global economy...

Strathprints makes available scholarly Open Access content by researchers in the Department of Work, Employment & Organisation based within Strathclyde Business School.

Better understanding the nature of work and labour within the globalised political economy is a focus of the 'Work, Labour & Globalisation Research Group'. This involves researching the effects of new forms of labour, its transnational character and the gendered aspects of contemporary migration. A Scottish perspective is provided by the Scottish Centre for Employment Research (SCER). But the research specialisms of the Department of Work, Employment & Organisation go beyond this to also include front-line service work, leadership, the implications of new technologies at work, regulation of employment relations and workplace innovation.

Explore the Open Access research of the Department of Work, Employment & Organisation. Or explore all of Strathclyde's Open Access research...

Wind turbine foundation deburial sensors based on induction-heated ceramic patches

Perry, Marcus and Saafi, Mohamed and Fusiek, Grzegorz and Niewczas, Pawel (2015) Wind turbine foundation deburial sensors based on induction-heated ceramic patches. In: Proceedings of SMAR 2015 the 3rd Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures. Istanbul Technical University, Antalya. ISBN 9783905594652

[img]
Preview
Text (Perry-etal-SMAR2015-Wind-turbine-foundation-deburial-sensors)
Perry_etal_SMAR2015_Wind_turbine_foundation_deburial_sensors.pdf
Accepted Author Manuscript

Download (491kB) | Preview

Abstract

The deburial and scouring of concrete wind turbine and bridge foundations presents a risk to structural stability and safety. In this work, we present a novel, ceramic temperature-sensing patch which can detect whether sections of a foundation are buried or exposed to air. The sensor patches, applied to concrete specimens, were fabricated by loading a geopolymer with 0 - 60 wt% ground magnetite. The magnetite content allowed the patches to be heated using an induction coil, while temperature profiles were monitored via changes in patch electrical impedance. Sensor patches were left uncoated, or were coated in surface-water, soil and sand. Each material provided a unique thermal signature which, with simple signal processing, could be used to reliably detect whether the patch was buried.