Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Wind turbine foundation deburial sensors based on induction-heated ceramic patches

Perry, Marcus and Saafi, Mohamed and Fusiek, Grzegorz and Niewczas, Pawel (2015) Wind turbine foundation deburial sensors based on induction-heated ceramic patches. In: Proceedings of SMAR 2015 the 3rd Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures. Istanbul Technical University, Antalya. ISBN 9783905594652

[img]
Preview
Text (Perry-etal-SMAR2015-Wind-turbine-foundation-deburial-sensors)
Perry_etal_SMAR2015_Wind_turbine_foundation_deburial_sensors.pdf - Accepted Author Manuscript

Download (491kB) | Preview

Abstract

The deburial and scouring of concrete wind turbine and bridge foundations presents a risk to structural stability and safety. In this work, we present a novel, ceramic temperature-sensing patch which can detect whether sections of a foundation are buried or exposed to air. The sensor patches, applied to concrete specimens, were fabricated by loading a geopolymer with 0 - 60 wt% ground magnetite. The magnetite content allowed the patches to be heated using an induction coil, while temperature profiles were monitored via changes in patch electrical impedance. Sensor patches were left uncoated, or were coated in surface-water, soil and sand. Each material provided a unique thermal signature which, with simple signal processing, could be used to reliably detect whether the patch was buried.