Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Studies of zonal flows driven by drift mode turbulence in laboratory and space plasmas

Bingham, R and Trines, R and Mendonca, Jose Tito and Silva, LO and Shukla, PK and Vaivads, A and Bamford, RA and Mori, WB and Tynan, G (2008) Studies of zonal flows driven by drift mode turbulence in laboratory and space plasmas. In: AIP Conference Proceedings 2008, 2008-07-14 - 2008-07-25.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The interaction between broadband drift mode turbulence and zonal flows is an important topic associated with transport at plasma boundaries. The generation of zonal flows by the modulational instability of broad band drift waves has resulted in the observation of self organized solitary wave structures at the magnetopause. To understand these structures and their importance to future burning plasmas and space plasmas we have developed a unique numerical simulation code that describes drift wave—zonal flow turbulence. We show that observations by cluster spacecraft confirms the role of drift wave zonal flow turbulence at the Earth’s magnetopause and further demonstrates that the magnetopause boundary acts in a s similar manner to transport barriers in tokamak fusion devices. Thus cementing the relationship between the plasma physics of laboratory devices and space plasmas.