Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Initial experimental results of a laboratory mini-magnetosphere for astronaut protection

Bamford, RA and Bingham, R and Gibson, K and Thornton, A and Bradford, J and Hapgood, M and Gargate, L and Silva, L and Norberg, C and Todd, T and Wilson, H and Stamper, R (2007) Initial experimental results of a laboratory mini-magnetosphere for astronaut protection. In: AGU Fall Meeting, 2007, 2007-12-10 - 2007-12-14.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Radiation is a major scientific and technological challenge for manned missions to Mars. With an interplanetary flight time of months to years there is a high probability of Solar Energetic Particle events during the flight. Radiation damage to human tissue could result in acute sickness or death of the occupants of an unprotected spacecraft. Thus there is much interest in techniques to mitigate the effects of these events and of the exposure to cosmic rays. The experimental and modelling work presented here concerns one of several innovative "Active Shield" solutions being proposed [1]. The idea of generating an artificial magnetosphere to recreate the protective shield of the Earth's magnetic field for space craft travelling to the Moon or Mars was considered seriously in the 1960's during the Apollo era. With most of the space agencies around the world setting their sights returning to the Moon and then on to Mars, the idea of some sort of active field solution is experiencing a resurgence. Results from the laboratory experiment to determine the effectiveness of a mini-magnetosphere barrier to be able to expel a flowing energetic "solar wind" plasma will be presented. This is compared to a 3D hybrid simulation code that has been successfully compared to other astrophysical situations e.g. AMPTE artificial comet releases [2]. The experiment and modelling comparisons will demonstrate the scalability between the laboratory and astrophysical scale.