Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Application of molecularly imprinted polymers in supercritical fluid chromatography

Ellwanger, Arndt and Owens, Paul K. and Karlsson, Lars and Bayoudh, Sami and Cormack, Peter and Sherrington, David and Sellergren, Börje (2000) Application of molecularly imprinted polymers in supercritical fluid chromatography. Journal of Chromatography A, 897 (1-2). pp. 317-327. ISSN 0021-9673

Full text not available in this repository. Request a copy from the Strathclyde author


Molecularly imprinted polymers (MIPs), for the templates free base racemic propranolol and the l-enantiomer of phenylalanine anilide (L-PA), were investigated as stationary phases in supercritical fluid chromatography (SFC). Large retention differences were observed on the propranolol MIP for both the template molecule and the structural analogue metoprolol compared to that observed on the corresponding blank polymer. Mobile phase composition and solute concentration were found to affect this retention behaviour. The phenylalanine anilide MIP (L-PA MIP) was found to be enantioselective in SFC with stronger retention observed for the template enantiomer. Throughout the study, characteristic imprinting peak shapes for the stronger retained template molecule were observed for both MIPs examined. After a number of days under supercritical fluid conditions, the performance of the photochemically initiated L-PA MIP was found to significantly deteriorate whereas the thermally initiated propranolol MIP revealed only small changes in its separation performance after a long term of operation. The separation behaviour of these two MIPs in SFC was compared with results obtained on the same columns in high-performance liquid chromatography (HPLC) both before and after their application in SFC.