Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Simulation of density measurements in plasma wakefields using photon acceleration

Kasim, Muhammad Firmansyah and Ratan, Naren and Ceurvorst, Luke and Sadler, James and Burrows, Philip N. and Trines, Raoul and Holloway, James and Wing, Matthew and Bingham, Robert and Norreys, Peter (2015) Simulation of density measurements in plasma wakefields using photon acceleration. Physical Review Special Topics: Accelerators and Beams, 18 (3). ISSN 1098-4402

[img]
Preview
Text (Kasim-etal-2015-Simulation-of-density-measurements-in-plasma-wakefields)
Kasim_etal_2015_Simulation_of_density_measurements_in_plasma_wakefields.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (779kB) | Preview

Abstract

One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser's reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.