Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Simulation of density measurements in plasma wakefields using photon acceleration

Kasim, Muhammad Firmansyah and Ratan, Naren and Ceurvorst, Luke and Sadler, James and Burrows, Philip N. and Trines, Raoul and Holloway, James and Wing, Matthew and Bingham, Robert and Norreys, Peter (2015) Simulation of density measurements in plasma wakefields using photon acceleration. Physical Review Special Topics: Accelerators and Beams, 18 (3). ISSN 1098-4402

Text (Kasim-etal-2015-Simulation-of-density-measurements-in-plasma-wakefields)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (779kB) | Preview


One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser's reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.