Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Correlation between the structure of the dielectric monolayer and the performance of low-voltage transistors based on pentacene

Gupta, Swati and Hannah, Stuart and Gleskova, Helena (2014) Correlation between the structure of the dielectric monolayer and the performance of low-voltage transistors based on pentacene. In: Organics, Photonics and Electronics: Faraday Discussion 174, 2014-09-08 - 2014-09-10, University of Strathclyde.

Text (Gupta-etal-OPE-2014-dielectric-monolayer-and-the-performance-of-low-voltage-transistors-based-on-pentacene)
Gupta_etal_OPE_2014_dielectric_monolayer_and_the_performance_of_low_voltage_transistors_based_on_pentacene.pdf - Accepted Author Manuscript

Download (800kB) | Preview


Alkyl phosphonic acids (CnPA) are becoming a material of choice for passivation of high-k oxides in organic thin-film transistors with ultra-thin gate dielectrics. A monolayer of phosphonic acid inserted between the inorganic oxide and the organic semiconductor provides two main benefits: (i) the density of the charge carrier traps associated with the surface –OH groups of the oxide is reduced because these groups act as binding sites for the organic molecules; and (ii) the low surface energy of the organic monolayer may reduce the density of defects in the subsequently deposited conjugated polymer. To date such monolayers have been assembled from solutions only. We have recently developed a vapour-phase self-assembly of n-octylphosphonic acid (C8PA) monolayer in vacuum that leads to a well chemisorbed monolayer of C8PA. When such a monolayer is attached to ~ 9-nm thick aluminium oxide to form an ultra-thin dielectric implemented in low-voltage organic thin-film transistors based on pentacene, the transistor performance exhibits measurable changes upon alteration of the structure of the C8PA monolayer.