Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

A multi-family GLRT-based algorithm for oil spill detection

De Maio, Antonio and Orlando, Danilo and Pallotta, Luca and Clemente, Carmine (2017) A multi-family GLRT-based algorithm for oil spill detection. IEEE Transactions on Geoscience and Remote Sensing, 55 (1). pp. 63-79. ISSN 0196-2892

[img]
Preview
Text (De-Maio-IEEETGRS2016-multi-family-GLRT-based-algorithm-for-oil-spill-detection)
De_Maio_IEEETGRS2016_multi_family_GLRT_based_algorithm_for_oil_spill_detection.pdf - Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (2MB) | Preview

Abstract

This paper deals with detection of oil spills from multi-polarization SAR images. The problem is cast in terms of a composite hypothesis test aimed at discriminating between the Polarimetric Covariance Matrix (PCM) equality (absence of oil spills in the tested region) and the situation where the region under test exhibits a PCM with at least an ordered eigenvalue smaller than that of a reference covariance. This last setup reflects the physical condition where the back scattering associated with the oil spills leads to a signal, in some eigen-directions, weaker than the one gathered from a reference area where it is a-priori known the absence of any oil slicks. A Multi-family Generalized Likelihood Ratio Test (MGLRT) approach is pursued to come up with an adaptive detector ensuring the Constant Alarm False Rate (CFAR) property. At the analysis stage, the behavior of the new architecture is investigated in comparison with a benchmark (but non-implementable) structure and some other sub-optimum adaptive detectors available in open literature. The study, conducted in the presence of both simulated and real data, confirms the practical effectiveness of the new approach.