Microstructural response of pure copper to cryogenic rolling
Konkova, T. and Mironov, S. and Korznikov, A. and Semiatin, S. L. (2010) Microstructural response of pure copper to cryogenic rolling. Acta Materialia, 58 (16). pp. 5262-5273. ISSN 1359-6454 (https://doi.org/10.1016/j.actamat.2010.05.056)
Full text not available in this repository.Request a copyAbstract
A high-resolution electron backscatter diffraction technique was applied to quantify grain-structure development and texture evolution during/after cryogenic rolling of pure copper. Microstructure evolution was found to be a complex process involving mainly geometrical effects associated with strain and discontinuous recrystallization but also including limited twinning and grain subdivision. Recrystallization was deduced to be static in nature and probably occurred during static storage of the material at room temperature after cryogenic rolling. The texture contained a pronounced {1 1 0}〈1 1 2〉 brass component; this observation was interpreted in terms of the suppression of cross-slip at cryogenic temperatures. In general, cryogenic rolling was found to be ineffective for the formation of a nanocrystalline structure in pure copper.
ORCID iDs
Konkova, T. ORCID: https://orcid.org/0000-0001-7495-7495, Mironov, S., Korznikov, A. and Semiatin, S. L.;-
-
Item type: Article ID code: 56556 Dates: DateEvent1 September 2010Published1 July 2010Published OnlineSubjects: Technology > Mechanical engineering and machinery
Technology > ManufacturesDepartment: Faculty of Engineering > Design, Manufacture and Engineering Management Depositing user: Pure Administrator Date deposited: 27 May 2016 15:12 Last modified: 11 Nov 2024 11:19 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/56556