Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell's equations

El Bouajaji, Mohamed and Dolean Maini, Victorita and Gander, Martin J. and Lanteri, Stephane and Perrussel, Ronan (2015) Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell's equations. ETNA - Electronic Transactions on Numerical Analysis, 44. pp. 572-592. ISSN 1068-9613

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We show in this paper how to properly discretize optimized Schwarz methods for the time-harmonic Maxwell's equations in two and three spatial dimensions using a discontinuous Galerkin (DG) method. Due to the multiple traces between elements in the DG formulation, it is not clear a priori how the more sophisticated transmission conditions in optimized Schwarz methods should be discretized, and the most natural approach, at convergence of the Schwarz method, does not lead to the monodomain DG solution, which implies that for such discretizations, the DG error estimates do not hold when the Schwarz method has converged. We present here a consistent discretization of the transmission conditions in the framework of a DG weak formulation, for which we prove that the multidomain and monodomain solutions for the Maxwell's equations are the same. We illustrate our results with several numerical experiments of propagation problems in homogeneous and heterogeneous media.