Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

On modeling player fitness in training for team sports with application to professional rugby

Revie, Matthew and Wilson, Kevin J. and Holdsworth, Rob and Yule, Stuart (2017) On modeling player fitness in training for team sports with application to professional rugby. International Journal of Sports Science and Coaching.

Text (Revie-etal-IJSSC-2016-On-modeling-player-fitness-in-training-for-team-sports)
Accepted Author Manuscript

Download (253kB) | Preview


It is increasingly important for professional sports teams to monitor player fitness in order to optimize performance. Models have been put forward linking fitness in training to performance in competition but rely on regular measurements of player fitness. As formal tests for measuring player fitness are typically time-consuming and inconvenient, measurements are taken infrequently. As such, it may be challenging to accurately predict performance in competition as player fitness is unknown. Alternatively, other data, such as how the players are feeling, may be measured more regularly. This data, however, may be biased as players may answer the questions differently and these differences may dominate the data. Linear Mixed Methods and Support Vector Machines were used to estimate player fitness from available covariates at times when explicit measures of fitness are unavailable. Using data provided by a professional rugby club, a case study was used to illustrate the application and value of these models. Both models performed well with R^2 values ranging from 60% to 85%, demonstrating that the models largely captured the biases introduced by individual players.