Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Impact of DFIG based offshore wind farms connected through VSC-HVDC link on power system stability

Edrah, Mohamed and Lo, Kwok L. and Anaya-Lara, Olimpo and Elansari, Abdussalam (2015) Impact of DFIG based offshore wind farms connected through VSC-HVDC link on power system stability. In: 11th IET International Conference on AC and DC Power Transmission. IET. ISBN 9781510807167

Text (Edrah-etal-IET2016-impact-of-dfig-based-offshore-wind-farm)
Accepted Author Manuscript

Download (845kB) | Preview


With the increased levels of offshore wind power penetration into power systems, the impact of offshore wind power on stability of power systems require more investigation. In this paper, the effects of a large scale doubly fed induction generator (DFIG) based offshore wind farm (OWF) on power system stability are examined. The OWF is connected to the main onshore grid through a voltage source converter (VSC) based high voltage direct current (HVDC) link. A large scale DFIG based OWF is connected to the New England 10-machine 39-bus test system through a VSC-HVDC. One of the synchronous generators in the test system is replaced by an OWF with an equivalent generated power. As the voltage source converter can control the active and reactive power independently, the use of the onshore side converter to control its terminal voltage is investigated. The behaviour of the test system is evaluated under both small and large grid disturbances in both cases with and without the offshore wind farm.