Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

A constitutive model for the metals subjected to thermomechanical loading with fast heating during heating-assisted forming

Peng, Xianghe and Qin, Y and Zhang, X. (2005) A constitutive model for the metals subjected to thermomechanical loading with fast heating during heating-assisted forming. Journal of Materials Processing Technology, 167 (2-3). pp. 244-250. ISSN 0924-0136

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Based on the concept of local thermal inconsistency, a constitutive model was developed for the description of the behaviors of metallic materials subjected to thermomechanical loading with fast heating, with reference to heating-assisted forming applications. The model considers effect of plastic deformation, of temperature as well as heating-rate and of recrystallization, on the mechanical property, hardening and damage of the materials. It can account for the reduction of the rupture strength of metallic materials subjected to high heating-rates or heating-rate histories, and the reduction of failure temperature of pre-stressed metallic materials heated at high heating-rates. The constitutive behavior of brass H62 subjected to uniaxial thermomechanical loading with fast heating is described and compared with experimental results. The satisfactory agreement between the computed and the experimental results shows the validity of the proposed model.