Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Model-based acceleration control of turbofan engines with a Hammerstein-Wiener representation

Wang, Jiqiang and Ye, Zhifeng and Hu, Zhongzhi and Wu, Xin and Dimirovsky, Georgi and Yue, Hong (2017) Model-based acceleration control of turbofan engines with a Hammerstein-Wiener representation. International Journal of Turbo and Jet Engines, 34 (2). pp. 141-148. ISSN 2191-0332

[img]
Preview
Text (Wang-etal-IJTJE-2016-Model-based-acceleration-control-of-turbofan-engines-with)
Wang_etal_IJTJE_2016_Model_based_acceleration_control_of_turbofan_engines_with.pdf - Accepted Author Manuscript

Download (316kB) | Preview

Abstract

Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.