Label consistent K-SVD for sparse micro-doppler classification

Coutts, Fraser K. and Gaglione, Domenico and Clemente, Carmine and Li, Gang and Proudler, Ian K. and Soraghan, John J. (2015) Label consistent K-SVD for sparse micro-doppler classification. In: 2015 IEEE International Conference on Digital Signal Processing (DSP). IEEE, pp. 90-94. ISBN 978-1-4799-8058-1

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Secondary motions of targets observed by radar introduce non-stationary returns containing the so-called micro-Doppler information. This is characterizing information that can be exploited to enhance automatic target recognition systems. In this paper, the challenge of classifying the micro-Doppler return of helicopters is addressed. A robust dictionary learning algorithm, Label Consistent K-SVD (LC-KSVD), is applied to identify effectively and efficiently helicopters. The effectiveness of the proposed algorithm is demonstrated on both synthetic and real radar data.