Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Reconfiguring smart structures using approximate heteroclinic connections in a spring-mass model

Zhang, Jiaying and McInnes, Colin R (2015) Reconfiguring smart structures using approximate heteroclinic connections in a spring-mass model. In: Proceedings of ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers (ASME). ISBN 978-0-7918-5729-8

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Several new methods are proposed to reconfigure smart structures with embedded computing, sensors and actuators. These methods are based on heteroclinic connections between equal-energy unstable equilibria in an idealised spring-mass smart structure model. Transitions between equal-energy unstable (but actively controlled) equilibria are considered since in an ideal model zero net energy input is required, compared to transitions between stable equilibria across a potential barrier. Dynamical system theory is used firstly to identify sets of equal-energy unstable configurations in the model, and then to connect them through heteroclinic connection in the phase space numerically. However, it is difficult to obtain such heteroclinic connections numerically in complex dynamical systems, so an optimal control method is investigated to seek transitions between unstable equilibria, which approximate the ideal heteroclinic connection. The optimal control method is verified to be effective through comparison with the results of the exact heteroclinic connection. In addition, we explore the use of polynomials of varying order to approximate the heteroclinic connection, and then develop an inverse method to control the dynamics of the system to track the polynomial reference trajectory. It is found that high order polynomials can provide a good approximation to true heteroclinic connections and provide an efficient means of generating such trajectories. The polynomial method is envisaged as being computationally efficient to form the basis for real-time reconfiguration of real, complex smart structures with embedded computing, sensors and actuators.