Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Noniterative application of EPANET for pressure dependent modelling of water distribution systems

Abdy Sayyed, Mohd Abbas H. and Gupta, Rajesh and Tanyimboh, Tiku (2015) Noniterative application of EPANET for pressure dependent modelling of water distribution systems. Water Resources Management, 29 (9). 3227–3242. ISSN 0920-4741

Text (Abdy-Sayyed-etal-WRM-2015-Noniterative-application-of-epanet-for-pressure-depenent-modelling)
Accepted Author Manuscript

Download (243kB)| Preview


    EPANET 2 has been used previously to simulate pressure-deficient operating conditions in water distribution systems by: (a) executing the algorithm repetitively until convergence is achieved; (b) modifying the source code to cater for pressure-dependent outflows; or (c) incorporating artificial elements e.g. reservoirs in the data input file. This paper describes a modelling approach that enables operating conditions with insufficient pressure to be simulated in a single execution of EPANET 2 without modifying the source code. This is achieved by connecting a check valve, a flow control valve and an emitter to the demand nodes. Thus the modelling approach proposed enhances an earlier formulation by obviating the need for an artificial reservoir at the nodes with insufficient pressure. Consequently the connecting pipe for the artificial reservoir (for which additional data must be provided) is not required. Also, we removed a previous limitation in the modelling of pressure-dependent nodal flows to better reflect the performance of the nodes with insufficient flow and pressure. This yields improved estimates of the available nodal flow and is achieved by simulating pressure-deficient nodal flows with emitters. The emitter discharge equation enables the nodal head-flow relationship to be varied to reflect the characteristics of any network. The procedure lends itself to extended period simulation, especially when carried out with the EPANET toolkit. The merits of the methodology are illustrated on several networks from the literature one of which has 2465 pipes. The results suggest the procedure is robust, reliable and fast enough for regular use.