Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Mapping nonlinear receptive field structure in primate retina at single cone resolution

Freeman, Jeremy and Field, Greg D and Li, Peter H and Greschner, Martin and Gunning, Deborah E and Mathieson, Keith and Sher, Alexander and Litke, Alan M and Paninski, Liam and Simoncelli, Eero P and Chichilnisky, E J (2015) Mapping nonlinear receptive field structure in primate retina at single cone resolution. eLife, 4. ISSN 2050-084X

[img]
Preview
Text (Freeman-etal-Elife-2015-Mapping-nonlinear-receptive-field-structure-in-primate-retina)
Freeman_etal_Elife_2015_Mapping_nonlinear_receptive_field_structure_in_primate_retina.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB) | Preview

Abstract

The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits.