Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Reducing nutrients, organic micropollutants, antibiotic resistance, and toxicity in rural wastewater effluent with subsurface filtration treatment technology

Anderson, Julie C. and Joudan, Shira and Shoichet, Eira and Cuscito, Leah D. and Alipio, Ayana E.C. and Donaldson, Craig S. and Khan, Sadia and Goltz, Douglas M. and Rudy, Martina D. and Frank, Richard A. and Knapp, Charles W. and Hanson, Mark L. and Wong, Charles S. (2015) Reducing nutrients, organic micropollutants, antibiotic resistance, and toxicity in rural wastewater effluent with subsurface filtration treatment technology. Ecological Engineering, 84. pp. 375-385. ISSN 0925-8574

Text (Anderson-etal-EE-2015-Reducing-nutrients-organic-micropollutants-antibiotic-resistance-and-toxicity-in-rural-wastewater-effluent-with-subsurface)
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (12MB)| Preview


    The ability of a sub-surface treatment filtration system to remove nutrients, thirty-nine organic contaminants, metals, and antibiotic resistant gene (ARG)-bearing organisms, and to attenuate acute toxicity of wastewater lagoon effluents, was assessed. Significant removal was observed for nutrients between the conventional primary and secondary sewage lagoons, with further average attenuation of 59% and 50% of ammonia and total phosphorus (TP), respectively, within the filter. Effluent concentrations of ammonia ranged from 0.4 to 2.6mg/L and concentrations of TP from 1 to 4.1mg/L, with decreasing acute toxicity from primary to secondary lagoons, and no toxicity observed in the filtration system based on Microtox<sup>®</sup> assays. Most organic micropollutants were also efficiently removed between the primary and secondary lagoons (e.g., up to 98% for atenolol). However, in general, little attenuation occurred within the filter for estrogenic compounds (e.g., 17α-ethinylestradiol); β-blockers (e.g., metoprolol); antidepressants (e.g., fluoxetine-Prozac); antibacterial agents (e.g., triclosan), non-steroidal anti-inflammatory drugs (e.g., diclofenac); lipid regulators (e.g., clofibric acid); and macrolide (e.g., clarithromycin) and sulfonamide (e.g., sulfamethazine) antibiotics; or metals (Cr, Cu, Fe, Mn, Ni, and Zn). This lack of removal was likely due to a minimal hydraulic residence time within the filter (~6h) under current operating conditions. The lagoon treatment system effectively removed ~99% of sulfonamide resistant bacteria, but the filter both reduced tetracycline-resistant bacteria (~58%) in wastewater and harbored them in the biofilms, as relative abundances of sul and tet genes were greatest there. The filter also harbored nitrifying and denitrifying bacteria, respectively, contributing to N removal. These results suggest that the constructed sub-surface treatment filtration system can provide a low-cost, low-maintenance, and effective means to reduce nutrient loading and improve microbial community structure and function.