Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

The discovery and development of Eg5 inhibitors for the clinic

Good, James A. D. and Berretta, Giacomo and Anthony, Nahoum G. and Mackay, Simon P. (2015) The discovery and development of Eg5 inhibitors for the clinic. In: Kinesins and Cancer. Sense Publishers, pp. 27-52. ISBN 978-94-017-9731-3

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The mitotic kinesin Eg5 (also known as kinesin spindle protein, KSP, Kif11, a member of the kinesin-5 family) represents an attractive oncology drug target in the ongoing development of anti-mitotic drugs that selectively block mitosis through disruption to the mitotic spindle. In this state-of-the-art review, we outline the progress that has been made in the development of Eg5 inhibitors for clinical use. We evaluate the preclinical development and attributes of key Eg5 inhibitors that have undergone clinical evaluation or extensive preclinical optimisation, and discuss the medicinal chemistry strategies utilised in their design to overcome the challenges encountered during lead optimisation. We critically analyse the progress that has been made towards delivering clinical benefits, and the wider implications this has in the utility of mitotic kinesin inhibitors as prospective oncology drugs.