Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A fuzzy expert system for automatic seismic signal classification

Ait Laasri, El Hassan and Akhouayri, Es-Saïd and Agliz, Dris and Zonta, Daniele and Atmani, Abderrahman (2015) A fuzzy expert system for automatic seismic signal classification. Expert Systems with Applications, 42 (3). pp. 1013-1027. ISSN 0957-4174

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Automatic classification of seismic events is of great importance due to the large amount of data received continuously. Seismic analysts classify events by visual inspection and calculation of event signal characteristics. This process is subjective and demands hard work as well as a significant amount of time and considerable experience. A reliable automatic classification task considerably reduces the effort required and makes classification faster and more objective. The aim of this study is to develop a fuzzy rule based expert classification system that is able to imitate human reasoning and incorporate the analyst's knowledge of seismic event classification. The fundamental idea behind using this approach was motivated by the way in which human analysts classify seismic events based on a set of experiential rules. Additionally, this approach was chosen due to its interpretability and adjustability, as well as its ability to manage the complexity of real data. Relevant discriminant features are extracted from event signal. Using these features, the classification system was built based on the vote by multiple rule fuzzy reasoning method with three types of rules. Comparison of this method with the single winner classical fuzzy reasoning model was carried out. Classification results on real seismic data showed the robustness of the classifier and its capability to operate in on-line classification.