Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Preconditioning for radial basis function partition of unity methods

Heryudono, Alfa and Larsson, Elisabeth and Ramage, Alison and von Sydow, Lina (2015) Preconditioning for radial basis function partition of unity methods. Journal of Scientific Computing, 67 (3). pp. 1089-1109. ISSN 0885-7474

[img]
Preview
Text (Heryudono-etal-JOSC-2015-Preconditioning-for-radial-basis-function-partition)
Heryudono_etal_JOSC_2015_Preconditioning_for_radial_basis_function_partition.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

Meshfree radial basis function (RBF) methods are of interest for solving partial differential equations due to attractive convergence properties, flexibility with respect to geometry, and ease of implementation. For global RBF methods, the computational cost grows rapidly with dimension and problem size, so localised approaches, such as partition of unity or stencil based RBF methods, are currently being developed. An RBF partition of unity method (RBF--PUM) approximates functions through a combination of local RBF approximations. The linear systems that arise are locally unstructured, but with a global structure due to the partitioning of the domain. Due to the sparsity of the matrices, for large scale problems, iterative solution methods are needed both for computational reasons and to reduce memory requirements. In this paper we implement and test different algebraic preconditioning strategies based on the structure of the matrix in combination with incomplete factorisations. We compare their performance for different orderings and problem settings and find that a no-fill incomplete factorisation of the central band of the original discretisation matrix provides a robust and efficient preconditioner.