Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Active network management using distributed constraint optimisation

Athanasiadis, Dimitrios and McArthur, Stephen (2013) Active network management using distributed constraint optimisation. In: 2013 IEEE Power and Energy Society General Meeting (PES). IEEE, Piscataway, NJ., 1 - 5. ISBN 9781479913039

Full text not available in this repository. Request a copy from the Strathclyde author


A fully distributed intelligence and control philosophy is needed for future flexible grids to facilitate the low carbon transition and the adoption of emerging network technologies. Future grids need scalable network management solutions in order to cope with the increase in uncertainty and complexity. Fundamental research in intelligent systems and network control will deliver the next generation of intelligent electricity network. This paper presents a network management function formalised as a Distributed Constraint Optimization (DCOP) problem, in particular power flow management. DCOP is an approach to negotiation and arbitration within decentralised control systems where conflicting control decisions arise. Furthermore, the problem will be visualized and decomposed as a factor graph which is a graphical presentation of factorization of a global function into a product of local functions. Additionally, a message passing algorithm, the max-sum algorithm, will be applied which can provide almost optimal results for decentralised coordination problems and limits the computation and communication problems.