On-chip high-speed sorting of micron-sized particles for high-throughput analysis
Holmes, D. and Sandison, M.E. and Green, N.G. and Morgan, H. (2005) On-chip high-speed sorting of micron-sized particles for high-throughput analysis. IEE Proceedings Nanobiotechnology, 152 (4). pp. 129-135. ISSN 1478-1581 (https://doi.org/10.1049/ip-nbt:20050008)
Full text not available in this repository.Request a copyAbstract
A new design of particle sorting chip is presented. The device employs a dielectrophoretic gate that deflects particles into one of two microfluidic channels at high speed. The device operates by focussing particles into the central streamline of the main flow channel using dielectrophoretic focussing. At the sorting junction (T- or Y-junction) two sets of electrodes produce a small dielectrophoretic force that pushes the particle into one or other of the outlet channels, where they are carried under the pressure-driven fluid flow to the outlet. For a 40 microm wide and high channel, it is shown that 6 microm diameter particles can be deflected at a rate of 300/s. The principle of a fully automated sorting device is demonstrated by separating fluorescent from non-fluorescent latex beads.
ORCID iDs
Holmes, D., Sandison, M.E. ORCID: https://orcid.org/0000-0003-1021-1461, Green, N.G. and Morgan, H.;-
-
Item type: Article ID code: 54422 Dates: DateEventAugust 2005PublishedSubjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Faculty of Engineering > Biomedical EngineeringDepositing user: Pure Administrator Date deposited: 01 Oct 2015 13:03 Last modified: 06 Jan 2025 17:52 URI: https://strathprints.strath.ac.uk/id/eprint/54422