Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Frequency restoration reserves : provision and activation using a multi-agent demand control system

D'Hulst, Reinhilde and Verbeeck, Jef and Caerts, Chris and Syed, Mazheruddin Hussain and Zaher, Ammar Samir Abd Elazim and Burt, Graeme (2015) Frequency restoration reserves : provision and activation using a multi-agent demand control system. In: 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST). IEEE, pp. 601-605. ISBN 978-1-4799-7736-9

[img]
Preview
Text (Verbeeck-etal-IEEE-EDST-2015-Frequency-restoration-reserves-provision-and-activation-using-a-multi-agent)
Verbeeck_etal_IEEE_EDST_2015_Frequency_restoration_reserves_provision_and_activation_using_a_multi_agent.pdf - Accepted Author Manuscript

Download (333kB) | Preview

Abstract

In this work a control system for restoration reserve providers is proposed in which optimal biddings of restoration reserve capacity are made based on the predicted flexibility of the reserve resources within the portfolio of the reserve provider. I t is assumed that the gate closure time for submitting reserve capacit y bids is 1 hour before activation time. The reserve capacity bids need to be formed so that activation of the capacity is always feasible, irrespective of the consumption of the portfolio before an activation request. The determination of the optimal reserve capacity bids is only based on aggregated flexibility constraint information received by the individual flexible resources within the portfolio of the reserve provider. No further resource-spe cific information is used to determine the optimal reserve capacity bid. The activation and dispatch of the required power consumption at real time is done through a market-based multi-agent control system. A simulation example, in which the reserve capacity of a portfolio of batteries is simulated, proves the feasibility of the proposed approach and shows that a high precision of the portfolio response can be obtained.