Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Frequency restoration reserves : provision and activation using a multi-agent demand control system

D'Hulst, Reinhilde and Verbeeck, Jef and Caerts, Chris and Syed, Mazheruddin Hussain and Zaher, Ammar Samir Abd Elazim and Burt, Graeme (2015) Frequency restoration reserves : provision and activation using a multi-agent demand control system. In: 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST). IEEE, pp. 601-605. ISBN 978-1-4799-7736-9

[img]
Preview
Text (Verbeeck-etal-IEEE-EDST-2015-Frequency-restoration-reserves-provision-and-activation-using-a-multi-agent)
Verbeeck_etal_IEEE_EDST_2015_Frequency_restoration_reserves_provision_and_activation_using_a_multi_agent.pdf
Accepted Author Manuscript

Download (333kB) | Preview

Abstract

In this work a control system for restoration reserve providers is proposed in which optimal biddings of restoration reserve capacity are made based on the predicted flexibility of the reserve resources within the portfolio of the reserve provider. I t is assumed that the gate closure time for submitting reserve capacit y bids is 1 hour before activation time. The reserve capacity bids need to be formed so that activation of the capacity is always feasible, irrespective of the consumption of the portfolio before an activation request. The determination of the optimal reserve capacity bids is only based on aggregated flexibility constraint information received by the individual flexible resources within the portfolio of the reserve provider. No further resource-spe cific information is used to determine the optimal reserve capacity bid. The activation and dispatch of the required power consumption at real time is done through a market-based multi-agent control system. A simulation example, in which the reserve capacity of a portfolio of batteries is simulated, proves the feasibility of the proposed approach and shows that a high precision of the portfolio response can be obtained.