Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

1H nuclear magnetic resonance spectroscopy-based metabonomic study in patients with cirrhosis and hepatic encephalopathy

Dabos, Konstantinos John and Parkinson, John Andrew and Sadler, Ian Howard and Plevris, John Nicholas and Hayes, Peter Clive (2015) 1H nuclear magnetic resonance spectroscopy-based metabonomic study in patients with cirrhosis and hepatic encephalopathy. World Journal of Hepatology, 7 (12). pp. 1701-1707. ISSN 1948-5182

[img]
Preview
Text (Dabos-etal-WJH-2015-1H-nuclear-magnetic-resonance-spectroscopy-based-metabonomic-study-in-patients-with-cirrhosis)
Dabos_etal_WJH_2015_1H_nuclear_magnetic_resonance_spectroscopy_based_metabonomic_study_in_patients_with_cirrhosis.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial 4.0 logo

Download (962kB)| Preview

    Abstract

    To identify plasma metabolites used as biomarkers in order to distinguish cirrhotics from controls and encephalopathics. A clinical study involving stable cirrhotic patients with and without overt hepatic encephalopathy was designed. A control group of healthy volunteers was used. Plasma from those patients was analysed using 1H - nuclear magnetic resonance spectroscopy. We used the Carr Purcell Meiboom Gill sequence to process the sample spectra at ambient probe temperature. We used a gated secondary irradiation field for water signal suppression. Samples were calibrated and referenced using the sodium trimethyl silyl propionate peak at 0.00 ppm. For each sample 128 transients (FID's) were acquired into 32 K complex data points over a spectral width of 6 KHz. 30 degree pulses were applied with an acquisition time of 4.0 s in order to achieve better resolution, followed by a recovery delay of 12 s, to allow for complete relaxation and recovery of the magnetisation. A metabolic profile was created for stable cirrhotic patients without signs of overt hepatic encephalopathy and encephalopathic patients as well as healthy controls. Stepwise discriminant analysis was then used and discriminant factors were created to differentiate between the three groups. Eighteen stabled cirrhotic patients, eighteen patients with overt hepatic encephalopathy and seventeen healthy volunteers were recruited. Patients with cirrhosis had significantly impaired ketone body metabolism, urea synthesis and gluconeogenesis. This was demonstrated by higher concentrations of acetoacetate (0.23 ± 0.02 vs 0.05 ± 0.00, P < 0.01), and b-hydroxybutarate (0.58 ± 0.14 vs 0.08 ± 0.00, P < 0.01), lower concentrations of glutamine (0.44 ± 0.08 vs 0.63 ± 0.03, P < 0.05), histidine (0.16 ± 0.01 vs 0.36 ± 0.04, P < 0.01) and arginine (0.08 ± 0.01 vs 0.14 ± 0.02, P < 0.03) and higher concentrations of glutamate (1.36 ± 0.25 vs 0.58 ± 0.04, P < 0.01), lactate (1.53 ± 0.11 vs 0.42 ± 0.05, P < 0.01), pyruvate (0.11 ± 0.02 vs 0.03 ± 0.00, P < 0.01) threonine (0.39 ± 0.02 vs 0.08 ± 0.01, P < 0.01) and aspartate (0.37 ± 0.03 vs 0.03 ± 0.01). A five metabolite signature by stepwise discriminant analysis could separate between controls and cirrhotic patients with an accuracy of 98%. In patients with encephalopathy we observed further derangement of ketone body metabolism, impaired production of glycerol and myoinositol, reversal of Fischer's ratio and impaired glutamine production as demonstrated by lower b-hydroxybutyrate (0.58 ± 0.14 vs 0.16 ± 0.02, P < 0.0002), higher acetoacetate (0.23 ± 0.02 vs 0.41 ± 0.16, P < 0.05), leucine (0.33 ± 0.02 vs 0.49 ± 0.05, P < 0.005) and isoleucine (0.12 ± 0.02 vs 0.27 ± 0.02, P < 0.0004) and lower glutamine (0.44 ± 0.08 vs 0.36 ± 0.04, P < 0.013), glycerol (0.53 ± 0.03 vs 0.19 ± 0.02, P < 0.000) and myoinositol (0.36 ± 0.04 vs 0.18 ± 0.02, P < 0.010) concentrations. A four metabolite signature by stepwise discriminant analysis could separate between encephalopathic and cirrhotic patients with an accuracy of 87%. Patients with cirrhosis and patients with hepatic encephalopathy exhibit distinct metabolic abnormalities and the use of metabonomics can select biomarkers for these diseases.