Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Control of PMSG-based wind turbines for system inertial response and power oscillation damping

Wang, Yi and Meng, Jianhui and Zhang, Xiangyu and Xu, Lie (2015) Control of PMSG-based wind turbines for system inertial response and power oscillation damping. IEEE Transactions on Sustainable Energy, 6 (2). pp. 556-574. ISSN 1949-3029

[img]
Preview
Text (Wang-etal-IEEE-TOSE-Control-of-PMSG-based-wind-turbines-for-system-inertial-response)
Wang_etal_IEEE_TOSE_Control_of_PMSG_based_wind_turbines_for_system_inertial_response.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

This paper investigates an improved active power control method for variable speed wind turbine to enhance the inertial response and damping capability during transient events. The optimized power point tracking (OPPT) controller, which shifts the turbine operating point from the maximum power point tracking (MPPT) curve to the virtual inertia control (VIC) curves according to the frequency deviation, is proposed to release the “hidden” kinetic energy and provide dynamic frequency support to the grid. The effects of the VIC on power oscillation damping capability are theoretically evaluated. Compared to the conventional supplementary derivative regulator-based inertia control, the proposed control scheme can not only provide fast inertial response, but also increase the system damping capability during transient events. Thus, inertial response and power oscillation damping function can be obtained in a single controller by the proposed OPPT control. A prototype three-machine system containing two synchronous generators and a PMSG-based wind turbine with 31% of wind penetration is tested to validate the proposed control strategy on providing rapid inertial response and enhanced system damping.