Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

A density functional theory study on the interaction of paraffins, olefins, and acetylenes with Na‐ETS‐10

Pillai, Renjith S. and Jorge, Miguel and Gomes, José R. B. (2015) A density functional theory study on the interaction of paraffins, olefins, and acetylenes with Na‐ETS‐10. Theoretical Chemistry Accounts, 134 (4). ISSN 1432-881X

[img]
Preview
Text (Pillai-etal-TCA2015-interaction-of-paraffins-olefins-and-acetylenes-with-Na-ETS-10)
Pillai_etal_TCA2015_interaction_of_paraffins_olefins_and_acetylenes_with_Na_ETS_10.pdf
Accepted Author Manuscript

Download (1MB) | Preview
[img] Text (TCA_revisedMS)
TCA_revisedMS.docx
Accepted Author Manuscript

Download (2MB)

Abstract

High demand for economically viable separation processes such as adsorptive separation for mixtures of hydrocarbons drives the need for understanding the interaction of hydrocarbons with titanosilicate adsorbents, to replace the energy-intensive cryogenic hydrocarbon separation. Density functional theory (DFT) was used to optimize the geometries and calculate the enthalpies for the interactions between paraffins (C2H6, C3H8), olefins (C2H4, C3H6), and acetylenes (C2H2, C3H4) with a cluster model of the Engelhard titanosilicate having sodium extra-framework cations (Na-ETS-10). The DFT calculations were performed with the M06-L exchange correlation functional and were corrected for the basis set superposition error with the counterpoise method. The calculated enthalpies for the interaction of hydrocarbons with Na-ETS-10 decrease with the decrease in the number of carbon atoms, in the order acetylenes > olefins > paraffins, and compare well with experimental data available in the literature. The enthalpies calculated at the M06-L/6-31++G** level of theory for the two extreme cases, i.e., strongest and weakest interactions, are −62.8 kJ mol-1 (C3H4) and −26.9 kJ mol-1 (C2H6). Additionally, the calculated vibrational frequencies are in good agreement with the characteristic vibrational modes of ETS-10 and of the interactions of hydrocarbons with Na+ in the 12-membered channel in ETS-10.