Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Deep neural networks for understanding and diagnosing partial discharge data

Catterson, V. M. and Sheng, B. (2015) Deep neural networks for understanding and diagnosing partial discharge data. In: 2015 IEEE Electrical Insulation Conference (EIC). IEEE, Piscataway, NJ, USA, pp. 218-221. ISBN 9781479973521

[img]
Preview
Text (Catterson-Sheng-IEEE-EIC-2015-Deep-neural-networks-for-understanding-and-diagnosing-partial)
Catterson_Sheng_IEEE_EIC_2015_Deep_neural_networks_for_understanding_and_diagnosing_partial.pdf - Accepted Author Manuscript

Download (262kB) | Preview

Abstract

Artificial neural networks have been investigated for many years as a technique for automated diagnosis of defects causing partial discharge (PD). While good levels of accuracy have been reported, disadvantages include the difficulty of explaining results, and the need to hand-craft appropriate features for standard two-layer networks. Recent advances in the design and training of deep neural networks, which contain more than two layers of hidden neurons, have resulted in improved results in speech and image recognition tasks. This paper investigates the use of deep neural networks for PD diagnosis. Defect samples constructed in mineral oil were used to generate data for training and testing. The paper demonstrates the improvements in accuracy and visualization of learning which can be gained from deep learning.