Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Polarity effects on breakdown of short gaps in a point-plane topology in air

Hogg, Michael and Timoshkin, Igor and MacGregor, Scott and Wilson, Mark and Given, Martin (2015) Polarity effects on breakdown of short gaps in a point-plane topology in air. IEEE Transactions on Dielectrics and Electrical Insulation, 22 (4). pp. 1815-1822. ISSN 1070-9878

[img]
Preview
Text (Hogg-etal-IEEE-TDEI-2015-Polarity-effects-on-breakdown-of-short-gaps-in-point-plane-topology)
Hogg_etal_IEEE_TDEI_2015_Polarity_effects_on_breakdown_of_short_gaps_in_point_plane_topology.pdf
Accepted Author Manuscript

Download (641kB)| Preview

    Abstract

    Electrical breakdown in air in a point-plane topology involves complex processes that are still not fully understood. Unlike uniform-field topologies, the highly-divergent fields produced by point-plane topologies create pre-breakdown corona with volumetric space charge. It is known that space charges developed by corona discharge have significant impacts on the breakdown voltage in non-uniform electrode topologies. With large inter-electrode gaps (>cm) the breakdown voltage for a HV point cathode in air at atmospheric pressure is noticeably larger than a HV point anode. However, this paper shows that in shorter point-plane gaps in air (less than ~10 mm), in the air pressure range 0.1-0.35 MPa, an HV point anode has a similar breakdown voltage which eventually is surpassed by the HV point cathode as the inter-electrode gap is increased. The inter-electrode gap at which the HV cathode has a higher hold-off voltage is found to be dependent on the gas pressure and radius of the point electrode.