Thermal quenching mechanism of photoluminescence in 1.55 µm GaInNAsSb/Ga(N)As quantum-well structures
Sun, H.D. and Calvez, S. and Dawson, M.D. and Gupta, J.A. and Aers, G.C. and Sproule, G.I. (2006) Thermal quenching mechanism of photoluminescence in 1.55 µm GaInNAsSb/Ga(N)As quantum-well structures. Applied Physics Letters, 89 (10). 101909. ISSN 0003-6951 (https://doi.org/10.1063/1.2345240)
Full text not available in this repository.Request a copyAbstract
The authors report the temperature dependent photoluminescence characteristics of a series of GaInNAsSb/Ga(N)As double quantum wells which all emit at 1.5-1.55 µm at room temperature and whose design is such that the quantum wells have nominally identical valence band profiles but show different confinement depth in the conduction band. The photoluminescence quenching at high temperature demonstrates a thermal activation energy independent of the conduction band offset and can be most plausibly attributed to the unipolar thermalization of holes from the quantum wells to the barriers. This effect will intrinsically limit the flexibility of heterostructure design using GaInNAs(Sb), as it would for any other material system with small valence band offset.
ORCID iDs
Sun, H.D., Calvez, S., Dawson, M.D. ORCID: https://orcid.org/0000-0002-6639-2989, Gupta, J.A., Aers, G.C. and Sproule, G.I.;-
-
Item type: Article ID code: 5379 Dates: DateEvent4 September 2006PublishedSubjects: Science > Physics > Optics. Light Department: Faculty of Science > Physics > Institute of Photonics Depositing user: Strathprints Administrator Date deposited: 31 Jan 2008 Last modified: 14 Nov 2024 07:05 URI: https://strathprints.strath.ac.uk/id/eprint/5379