Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Computer simulations of polymer chain relaxation via Brownian motion

Grassia, P. and Hinch, E. J. (1996) Computer simulations of polymer chain relaxation via Brownian motion. Journal of Fluid Mechanics, 308. pp. 255-288. ISSN 0022-1120

Full text not available in this repository. Request a copy from the Strathclyde author


Numerical simulations are employed to study the Brownian motion of a bead-rod polymer chain dissolved in a solvent. An investigation is conducted of the relaxation of the stress for an initially straight chain as it begins to coil. For a numerical time step δt in the simulations, conventional formulae for the stress involve averaging large ±O(1/(δt)1/2) contributions over many realizations, in order to yield an O(1) average. An alternative formula for the stress is derived which only contains O(1) contributions, thereby improving the quality of the statistics. For a chain consisting of n rods in a solvent at temperature T, the component of the bulk stress along the initial chain direction arising from tensions in the rods at the initial instant is kT^×n(13n2+n+23). Thus the bead-rod model yields results very different from other polymer models, such as the entropic spring of Flory (1969), which would assign an infinite stress to a fully aligned chain. For rods of length l and beads of friction factor ζ^ the stress decays at first on O(ζ^l^2/kT^×1/n2) time scales. On longer time scales, this behaviour gives way to a more gradual stress decay, characterized by an O(kT^×n) stress following a simple exponential decay with an O(kT^/ζ^l^2×1/n2) rate. Matching these two limiting regimes, a power law decay in time t is found with stress O(kT^×n2×(kT^t^/ζ^l^2)−1/2). The dominant physical processes occurring in these separate short, long and intermediate time regimes are identified.