Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations

Fukushima, Yoshimitsu and Bonilla, Luis Fabián and Scotti, Oona and Douglas, John (2007) Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations. Journal of Earthquake Engineering, 11 (5). pp. 712-724. ISSN 1559-808X

Full text not available in this repository.Request a copy from the Strathclyde author


We classify sites based on their predominant period computed using average horizontal-to-vertical (H/V) response spectral ratios and examine the impact of this classification scheme on empirical ground-motion models. One advantage of this classification is that deep geological profiles and high shear-wave velocities are mapped to the resonance frequency of the site. We apply this classification scheme to the database of Fukushima et al. [2003], for which stations were originally classified as simply rock or soil. The calculation of average H/V response spectral ratios permits the majority of sites in the database to be unambiguously classified. Soft soil conditions are clearly apparent using this technique. Ground-motion prediction equations are then computed using this alternative classification scheme. The aleatoric variability of these equations (measured by their standard deviations) is slightly lower than those derived using only soil and rock classes. However, perhaps more importantly, predicted response spectra are radically different to those predicted using the soil/rock classification. In addition, since the H/V response spectral ratios were used to classify stations the predicted spectra for different sites show clear separation. Thus, site classification using the predominant period appears to be partially mapped into the site coefficients of the ground-motion model.