Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Utilising stored wind energy by hydro-pumped storage to provide frequency support at high levels of wind energy penetration

Attya, Ayman Bakry Taha and Hartkopf, Thomas (2015) Utilising stored wind energy by hydro-pumped storage to provide frequency support at high levels of wind energy penetration. IET Generation Transmission and Distribution. ISSN 1751-8687

[img]
Preview
Text (Attya-Hartkopf-IET-GTD-2015-Utilizing-stored-wind-energy-by-hydro-pumped-storage-to-provide-frequency)
Attya_Hartkopf_IET_GTD_2015_Utilizing_stored_wind_energy_by_hydro_pumped_storage_to_provide_frequency.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Wind farms (WFs) contribution in frequency deviations curtailment is a grey area, especially when WFs replace large conventional generation capacities. This study offers an algorithm to integrate hydro-pumped storage station (HPSS) to provide inertial and primary support, during frequency drops by utilising stored wind energy. However, wind turbines follow maximum power tracking, and do not apply frequency support methods, thus the wasted wind energy is mitigated. First, HPSS rated power and energy capacity are determined based on several givens, including wind speed and load characteristics. Thus, HPSS major aspects are estimated [e.g. pump(s), reservoir layout and generator(s)]. Second, offered algorithm coordinates energy storage, and releasing through several dynamic and static factors. HPSS output is continuously controlled through a timed approach to provide frequency support. A hypothetical system is inspired from Egyptian grid and real wind speed records at recommended locations to host WFs. Case studies examine the algorithm impact on frequency recovery, at 40% wind power penetration. The responses of thermal generation and HPSS are analysed to highlight the influence of tuning the parameters of the proposed algorithm. The assessment of several frequency metrics insures the positive role of HPSS in frequency drops curtailment. Simulation environments are MATLAB and Simulink.