Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Unique reporter-based sensor platforms to monitor signalling in cells

Jiwaji, Meesbah and Daly, Rónán and Gibriel, Abdullah and Barkess, Gráinne and McLean, Pauline and Yang, Jingli and Pansare, Kshama and Cumming, Sarah and McLauchlan, Alisha and Kamola, Piotr J. and Bhutta, Musab S. and West, Adam G. and West, Katherine L. and Kolch, Walter and Girolami, Mark A. and Pitt, Andrew. R. (2012) Unique reporter-based sensor platforms to monitor signalling in cells. PLoS ONE, 7 (11). ISSN 1932-6203

[img]
Preview
Text (Jiwaji-etal-PLOSONE2012-unique-reporter-based-sensor-platforms-to-monitor)
Jiwaji_etal_PLOSONE2012_unique_reporter_based_sensor_platforms_to_monitor.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Introduction In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. Methods Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. Findings We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. Conclusions We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters.