Novel two dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging
Zabalza, Jaime and Ren, Jinchang and Zheng, Jiangbin and Han, Junwei and Zhao, Huimin and Li, Shutao and Marshall, Stephen (2015) Novel two dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Transactions on Geoscience and Remote Sensing, 53 (8). pp. 4418-4433. ISSN 0196-2892 (https://doi.org/10.1109/TGRS.2015.2398468)
Preview |
Text.
Filename: Zabalza_etal_TGRS_2015_Novel_two_dimensional_singular_spectrum_analysis_for_effective_features.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
Feature extraction is of high importance for effective data classification in hyperspectral imaging (HSI). Considering the high correlation among band images, spectral-domain feature extraction is widely employed. For effective spatial information extraction, a 2-D extension to singular spectrum analysis (SSA), a recent technique for generic data mining and temporal signal analysis, is proposed. With 2D-SSA applied to HSI, each band image is decomposed into varying trend, oscillations and noise. Using the trend and selected oscillations as features, the reconstructed signal, with noise highly suppressed, becomes more robust and effective for data classification. Three publicly available data sets for HSI remote sensing data classification are used in our experiments. Comprehensive results using a support vector machine (SVM) classifier have quantitatively evaluated the efficacy of the proposed approach. Benchmarked with several state-of-the-art methods including 2-D empirical mode decomposition (2D-EMD), it is found that our proposed 2D-SSA approach generates the best results in most cases. Unlike 2D-EMD which requires sequential transforms to obtain detailed decomposition, 2D-SSA extracts all components simultaneously. As a result, the executive time in feature extraction can also be dramatically reduced. The superiority in terms of enhanced discrimination ability from 2D-SSA is further validated when a relatively weak classifier, k-nearest neighbor (k-NN), is used for data classification. In addition, the combination of 2D-SSA with 1D-PCA (2D-SSA-PCA) has generated the best results among several other approaches, which has demonstrated the great potential in combining 2D-SSA with other approaches for effective spatial-spectral feature extraction and dimension reduction in HSI.
ORCID iDs
Zabalza, Jaime ORCID: https://orcid.org/0000-0002-0634-1725, Ren, Jinchang ORCID: https://orcid.org/0000-0001-6116-3194, Zheng, Jiangbin, Han, Junwei, Zhao, Huimin, Li, Shutao and Marshall, Stephen ORCID: https://orcid.org/0000-0001-7079-5628;-
-
Item type: Article ID code: 53408 Dates: DateEvent31 August 2015Published20 February 2015Published Online14 January 2015AcceptedNotes: (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering
Technology and Innovation Centre > Sensors and Asset ManagementDepositing user: Pure Administrator Date deposited: 17 Jun 2015 15:08 Last modified: 06 Jan 2025 02:07 URI: https://strathprints.strath.ac.uk/id/eprint/53408