Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Causality-constrained multiple shift sequential matrix diagonalisation for parahermitian matrices

Corr, Jamie and Thompson, Keith and Weiss, Stephan and McWhirter, John G. and Proudler, Ian K. (2014) Causality-constrained multiple shift sequential matrix diagonalisation for parahermitian matrices. In: 2014 Proceedings of the 22nd European Signal Processing Conference (EUSIPCO). IEEE, pp. 1277-1281. ISBN 978-0-9928626-1-9

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper introduces a causality constrained sequential matrix diagonalisation (SMD) algorithm, which generates a causal paraunitary transformation that approximately diagonalises and spectrally majorises a parahermitian matrix, and can be used to determine a polynomial eigenvalue decomposition. This algorithm builds on a multiple shift technique which speeds up diagonalisation per iteration step based on a particular search space, which is constrained to permit a maximum number of causal time shifts. The results presented in this paper show the performance in comparison to existing algorithms, in particular an unconstrained multiple shift SMD algorithm, from which our proposed method derives.