Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

The effect of gain crystal temperature on a miniature single frequency Nd:YVO4 laser

Lake, T.K. and Kemp, A. and Sinclair, B.D. (2001) The effect of gain crystal temperature on a miniature single frequency Nd:YVO4 laser. In: Summaries of papers presented at the Conference on Lasers and Electro-Optics. IEEE, p. 531. ISBN 1-55752-662-1

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Summary form only given. Microchip lasers represent highly efficient sources of laser radiation and are easily mass produced at low cost. However, it is difficult to operate them on a single frequency at output powers greater than about 150 mW. Hence, laser geometries that maintain the simplicity exhibited by microchip lasers yet which can be operated on a single frequency at higher output powers are of great interest. In the paper we demonstrate the potential of a birefringent filter, consisting of a Brewster plate and a birefringent crystal, as a frequency selective element in a micro-laser which has additionally, a birefringent gain crystal. Single frequency output powers greater than 760 mW have been obtained at 1064 nm for 2 W of diode laser pump power