A finite axiomatisation of inductive-inductive definitions
Nordvall Forsberg, Fredrik and Setzer, Anton; Berger, Ulrich and Hannes, Diener and Schuster, Peter and Seisenberger, Monika, eds. (2012) A finite axiomatisation of inductive-inductive definitions. In: Logic, Construction, Computation. Ontos mathematical logic, 3 . De Gruyter, 259 - 287. ISBN 9783110324921 (https://doi.org/10.1515/9783110324921.259)
Full text not available in this repository.Request a copyAbstract
Induction-induction is a priciple for mutually defining data types A : Set and B : A Set. Both A and B are defined inductively, and the constructors for A can refer to B and vice versa.
ORCID iDs
Nordvall Forsberg, Fredrik ORCID: https://orcid.org/0000-0001-6157-9288 and Setzer, Anton; Berger, Ulrich, Hannes, Diener, Schuster, Peter and Seisenberger, Monika-
-
Item type: Book Section ID code: 53293 Dates: DateEvent2012PublishedSubjects: Science > Mathematics Department: Faculty of Science > Computer and Information Sciences Depositing user: Pure Administrator Date deposited: 05 Jun 2015 10:26 Last modified: 11 Nov 2024 15:00 URI: https://strathprints.strath.ac.uk/id/eprint/53293
CORE (COnnecting REpositories)