Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Singular spectrum analysis for improving hyperspectral imaging based beef eating quality evaluation

Qiao, Tong and Ren, Jinchang and Craigie, Cameron and Zabalza, Jaime and Maltin, Charlotte and Marshall, Stephen (2015) Singular spectrum analysis for improving hyperspectral imaging based beef eating quality evaluation. Computers and Electronics in Agriculture, 115. pp. 21-25. ISSN 0168-1699

[img]
Preview
Text (Qiao-etal-CEA-2015-Singular-spectrum-analysis-for-improving-hyperspectral-imaging-based-beef-eating)
Qiao_etal_CEA_2015_Singular_spectrum_analysis_for_improving_hyperspectral_imaging_based_beef_eating.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (916kB) | Preview

Abstract

Detecting beef eating quality in a non-destructive way has been popular in recent years. Among various non-destructive assessing methods, the feasibility of hyperspectral imaging (HSI) system was investigated in this paper. Hyperspectral images of beef samples were collected in an abattoir production line and used for predicting the beef tenderness and pH value. Support vector machine (SVM) was applied to construct the prediction equation. Before utilizing the original HSI spectral profiles directly, we propose to use singular spectrum analysis (SSA) as a pre-processing approach, where SSA has been proven to be an effective technique for time-series analysis in diverse applications. The results indicate that SSA can remove the instrumental noise of HSI system effectively and therefore improve the prediction performance.