Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Properties of natural diamond microlenses fabricated by plasma etching

Choi, H.W. and Gu, E. and Liu, C. and Griffin, C. and Girkin, J.M. and Watson, I.M. and Dawson, M.D. (2005) Properties of natural diamond microlenses fabricated by plasma etching. Industrial Diamond Review, 2005 (2). pp. 29-32. ISSN 0019-8145

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Refractive microlenses with diameters of between a few micrometers to a few hundred micrometers have received much attention, due to their numerous applications in, for example, optical communications, optical data storage, digital displays, and laser beam shaping. Wide band-gap inorganic materials, including GaN, SiC and ZnO have proved popular for these applications in recent years due to their attractive optical and electronic properties. However, it is anticipated that these materials will be superseded for many applications by diamond. Advantageous properties including optical transparency, high thermal conductivity and high carrier mobility make natural diamond an attractive choice, but its hardness and chemical inertness provide a significant challenge for device processing. This paper demonstrates the ability to etch natural grade-IIa diamond using inductively-coupled plasma etching and discusses the properties of the finished lenses in terms of surface roughness, surface profile and focal length.