An open source hypersonic aerodynamic and aerothermodynamic modelling tool

Mehta, Piyush and Minisci, Edmondo and Vasile, Massimiliano and Walker, Andrew C. and Brown, Melrose (2015) An open source hypersonic aerodynamic and aerothermodynamic modelling tool. In: 8th European Symposium on Aerothermodynamics for Space Vehicles, 2015-03-02 - 2015-03-06.

[thumbnail of Mehta-etal-ESA-Conf-2015-An-open-source-hypersonic-aerotherodynamic-modeling-tool]
Text. Filename: Mehta_etal_ESA_Conf_2015_An_open_source_hypersonic_aerotherodynamic_modeling_tool.pdf
Accepted Author Manuscript

Download (1MB)| Preview


We present recent progress towards a Free Open Source Tool for Re-entry of Asteroids and Debris (FOSTRAD) that can perform multi-fidelity modeling of hypersonic aerodynamics and aerothermodynamics across all flow (density) regimes applicable to the re-entry of space vehicles, debris, and asteroids. FOSTRAD’s capabilities are validated using Direct Simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) simulations. Aerodynamic computations in the continuum and free molecular regime are performed using Modified Newtonian Theory and the free molecular analytical model of Schaaf and Chambre, respectively. Aerothermodynamic computations are performed using the semi-empirical methods of Detra-Kemp-Riddell (as used in SCARAB), Fay-Riddell, and Van Driest in the continuum regime while the free molecular analytical model is used in the free molecular regime. Computations in the transition regime are performed using the newly developed bridging formulae for aerodynamics and Legge formulae for aerothermodynamics. Results show that the proposed tool performs well in estimating both aerodynamic and aerothermodynamic properties across all flow regimes.