Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Mask-free photolithographic exposure using a matrix-addressable micropixellated AllnGaN ultraviolet light-emitting diode

Jeon, C.W. and Gu, E. and Dawson, M.D. (2005) Mask-free photolithographic exposure using a matrix-addressable micropixellated AllnGaN ultraviolet light-emitting diode. Applied Physics Letters, 86 (221105). ISSN 0003-6951

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report the integration of a UV-curable polymer microlens array onto a matrix-addressable, 368-nm-wavelength, light-emitting diode device containing 64×64 micropixel elements. The geometrical and optical parameters of the microlenses were carefully chosen to allow the highly divergent emission from each micropixel to be collimated into a narrow beam of about 8-µm diam, over a distance of more than 500 µm. This device is demonstrated as a photolithographic exposure tool, where the pattern-programmable array plays the role both of light source and photomask. A simple pattern comprised of two disks having 16-µm diam and 30-µm spacing was transferred into an i-line photoresist.