Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Mask-free photolithographic exposure using a matrix-addressable micropixellated AllnGaN ultraviolet light-emitting diode

Jeon, C.W. and Gu, E. and Dawson, M.D. (2005) Mask-free photolithographic exposure using a matrix-addressable micropixellated AllnGaN ultraviolet light-emitting diode. Applied Physics Letters, 86 (221105). ISSN 0003-6951

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report the integration of a UV-curable polymer microlens array onto a matrix-addressable, 368-nm-wavelength, light-emitting diode device containing 64×64 micropixel elements. The geometrical and optical parameters of the microlenses were carefully chosen to allow the highly divergent emission from each micropixel to be collimated into a narrow beam of about 8-µm diam, over a distance of more than 500 µm. This device is demonstrated as a photolithographic exposure tool, where the pattern-programmable array plays the role both of light source and photomask. A simple pattern comprised of two disks having 16-µm diam and 30-µm spacing was transferred into an i-line photoresist.