Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light emitting polymer overlayer films

Heliotis, G. and Stavrinou, P.N. and Bradley, D.D.C. and Gu, E. and Griffin, C. and Jeon, C.W. and Dawson, M.D. (2005) Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light emitting polymer overlayer films. Applied Physics Letters, 87 (103505). ISSN 0003-6951

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report the fabrication of hybrid organic/inorganic semiconductor light-emitting devices that operate across the entire visible spectrum. The devices are based on a series of blue-, green-, and red-light-emitting polyfluorene materials that convert the emission from an array of micron-sized ultraviolet InGaN light-emitting diodes. We also demonstrate white-light-emitting versions of these hybrid devices by employing single films of carefully adjusted polyfluorene blends in which cascade energy transfer occurs between the constituent materials. The spectral and operating characteristics of the devices are described in detail. Such organic emission layer/inorganic light-emitting diode (LED) array based devices may provide a promising route to the fabrication of low-cost full-color microdisplays and other instrumentation devices.