Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

An air-stable DPP-thieno-TTF copolymer for single-material solar cell devices and field effect transistors

Arumugam, Sasikumar and Cortizo-Lacalle, Diego and Rossbauer, Stephan and Hunter, Simon and Kanibolotsky, Alexander L. and Inigo, Anto R. and Lane, Paul A. and Anthopoulos, Thomas D. and Skabara, Peter J. and Inigo, Jesuraj (2015) An air-stable DPP-thieno-TTF copolymer for single-material solar cell devices and field effect transistors. ACS Applied Materials and Interfaces, 7 (51). pp. 27999-28005. ISSN 1944-8244

[img]
Preview
Text (Skabara-etal-AMI2015-single-material-solar-cell-devices-and-field-effect-transistors)
Skabara_etal_AMI2015_single_material_solar_cell_devices_and_field_effect_transistors.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (4MB) | Preview

Abstract

Following an approach developed in our group to incorporate tetrathiafulvalene (TTF) units into conjugated polymeric systems, we have studied a low band gap polymer incorporating TTF as a donor component. This polymer is based on a fused thieno-TTF unit that enables the direct incorporation of the TTF unit into the polymer, and a second comonomer based on the diketopyrrolopyrrole (DPP) molecule. These units represent a donor-acceptor copolymer system, p(DPP-TTF), showing strong absorption in the UV-visible region of the spectrum. An optimized p(DPP-TTF) polymer organic field effect transistor and a single material organic solar cell device showed excellent performance with a hole mobility of up to 5.3 x 10-2 cm2/(V s) and a power conversion efficiency (PCE) of 0.3%, respectively. Bulk heterojunction organic photovoltaic devices of p(DPP-TTF) blended with phenyl-C71-butyric acid methyl ester (PC71BM) exhibited a PCE of 1.8%.