Picture of satellite hovering above Earth

Open Access research exploring new frontiers in aerospace engineering...

Strathprints makes available Open Access scholarly outputs by the Department of Mechanical & Aerospace Engineering at Strathclyde, which includes an emphasis on air and space research. The Advanced Space Concepts Laboratory (ASCL), the Future Air-Space Transportation Technology Laboratory (FASTTlab) and the Intelligent Computational Engineering Laboratory (ICElab) specialise in this work.

The ASCL undertakes frontier research on visionary space systems, delivering radically new approaches to space systems engineering. Meanwhile, FASTTlab seeks to revolutionise the global air-space transportation systems and infrastructure. ICElab develops advanced research on artificial and computational intelligence techniques with particular focus on optimisation, optimal control, uncertainty-based multidisciplinary design optimisation and machine learning applied to the design and control of complex engineering systems.

Learn more and explore the Open Access research by ASCL, FASTTlab and ICElab. Or, explore all of Strathclyde's Open Access research...

Boolean logic device done with DFB laser diode

Hurtado, Antonio and Gonzalez-Marcos, Ana P. and Martin-Pereda, Jose A. (2004) Boolean logic device done with DFB laser diode. Proceedings of SPIE - The International Society for Optical Engineering, 5577. pp. 58-65. ISSN 0277-786X

Full text not available in this repository. Request a copy from the Strathclyde author


We present simulation results on how power output-input characteristic bistability in Distributed FeedBack -DFB semiconductor laser diode SLA can be employed to implemented Boolean logic device. Two configurations of DFB Laser diode under external optical injection, either in the transmission or in the reflective mode of operation, is used to implement different Optical Logic Cells (OLCs), called the Q- and the P-Device OLCs. The external optical injection correspond to two inputs data plus a cw control signal that allows to choose the Boolean logic function to be implement. DFB laser diode parameters are choosing to obtain an output-input characteristic with the values desired. The desired values are mainly the on-off contrast and switching power, conforming shape of hysteretic cycle. Two DFB lasers in cascade, one working in transmission operation and the other one in reflective operation, allows designing an input-output characteristic based on the same respond of a self-electrooptic effect device is obtained. Input power for a bit"1" is 35 μW(70μW) and a bit "0" is zero for all the Boolean function to be execute. Device control signal range to choose the logic function is 0-140 μW (280 μW). Q-device (P-device).