Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Fabrication of matrix-addressable InGaN-based microdisplays of high array density

Jeon, C.W. and Choi, H.W. and Dawson, M.D. (2003) Fabrication of matrix-addressable InGaN-based microdisplays of high array density. IEEE Photonics Technology Letters, 15 (11). pp. 1516-1518. ISSN 1041-1135

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We describe the fabrication and characterization of matrix-addressable microlight-emitting diode (micro-LED) arrays based on InGaN, having elemental diameter of 20 m and array size of up to 128x96 elements. The introduction of a planar topology prior to contact metallization is an important processing step in advancing the performance of these devices. Planarization is achieved by chemical-mechanical polishing of the SiO2-deposited surface. In this way, the need for a single contact pad for each individual element can be eliminated. The resulting significant simplification in the addressing of the pixels opens the way to scaling to devices with large numbers of elements. Compared to conventional broad-area LEDs, the micrometer-scale devices exhibit superior light output and current handling capabilities, making them excellent candidates for a range of uses including high-efficiency and robust microdisplays.