Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Analysis of two algorithms for multi-objective min-max optimization

Alicino, Simone and Vasile, Massimiliano (2014) Analysis of two algorithms for multi-objective min-max optimization. In: Bio-inspired Optimization Methods and their Applications, BIOMA 14, 2014-09-13 - 2014-09-13.

[img] PDF (Alicino-Vasile-BIOMA14-Analysis-two-algorithms-multi-objective-min-max-optimization-Sep-2014)
Alicino_Vasile_BIOMA14_Analysis_two_algorithms_multi_objective_min_max_optimization_Sep_2014.pdf
Preprint

Download (1MB)

    Abstract

    This paper presents two memetic algorithms to solve multi-objective min-max problems, such as the ones that arise in evidence-based robust optimization. Indeed, the solutions that minimize the design budgets are robust under epistemic uncertainty if they maximize the belief in the realization of the value of the design budgets. Thus robust solutions are found by minimizing with respect to the design variables the global maximum with respect to the uncertain variables. A number of problems, composed of functions whose uncertain space is modelled by means of Evidence Theory, and presenting multiple local maxima as well as concave, convex, and disconnected fronts, are used to test the performance of the proposed algorithms.