Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Effects of volume conservation on Plateau border sag in foams

Embley, B. and Grassia, P. (2007) Effects of volume conservation on Plateau border sag in foams. Philosophical Magazine, 87 (36). pp. 5697-5718. ISSN 1478-6435

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the sagging Plateau border model, borders which are loaded with the weight of the liquid that they contain are distorted normal to their length and in varying amounts along their length. Applied to a 3D foam structure, this would result in artificial variations in bubble size/volume, so a Surface Evolver model is developed for conserving the volume of bubbles adjacent to the sagging Plateau border. As a result of this modification to the sagging Plateau border model, the sag is reduced and the adjacent films bulge. An analytical solution for the case of conserved bubble volume shows good agreement with the Surface Evolver simulations. With increased loading the three-film structure collapses under its own weight–as is also the case for unconserved bubble volume. However, the loading that can be supported by the structure is greater with volume conservation than without. Finally, to extend these theoretical results and to obtain an outlook for the use of the sagging border model to simulate the limit of stability of foam structure, the onset of structural rearrangement or ‘convective (structural) instability’ is estimated from collapse in the Surface Evolver simulations.